Znaczenie jakości światła w produkcji rozsady pomidorów

Bardzo ważnym zagadnieniem w produkcji ogrodniczej jest sprawna i efektywna kontrola wzrostu oraz pokroju roślin. Najszybciej pożądany efekt można uzyskać używając chemicznych retardantów wzrostu, jednak ich wykorzystanie w produkcji rozsady warzyw może wpłynąć w czasie dalszej uprawy na opóźnienie i zmniejszenie plonowania, a także powodować zaleganie szkodliwych pozostałości w plonie. Z tych względów wzrasta zainteresowanie metodami bardziej bezpiecznymi dla plonu i środowiska, między innymi coraz częściej wykorzystuje się pod osłonami zmiany jakości światła.

Fotosynteza i fotomorfogeneza

Światło to jeden z najważniejszych abiotycznych czynników środowiskowych, wywierających silny wpływ na wzrost i rozwój roślin. Jest podstawowym źródłem energii wykorzystywanej przez rośliny w procesie fotosyntezy, czyli w przetwarzaniu energii promieniowania w energię chemiczną. Jego niedobór szczególnie silnie oddziałuje na rośliny będące w okresie juwenilnym. Rozsada wyprodukowana w okresie niedoboru światła bez doświetlania jest wyetiolowana, bardziej podatna na uszkodzenia i choroby, a rośliny z niej uzyskane później wchodzą w okres plonowania.

Jeszcze do niedawna rola światła w produkcji ogrodniczej rozpatrywana była głównie pod kątem jego natężenia, mniejszą rolę przywiązywano do jakości światła, czyli jego składu spektralnego. Wiele doświadczeń wskazuje jednak na to, że można bardzo silnie wpływać na wzrost i rozwój roślin, stosując w czasie ich uprawy światło określonej jakości. Całokształt indukowanych przez światło i niezależnych od fotosyntezy procesów wzrostu i rozwoju roślin określa się jako fotomorfogenezę. Procesy te zachodzą przez cały cykl życiowy rośliny, od kiełkowania nasion i deetiolacji siewek, poprzez rozwój wegetatywny — wzrost łodygi i rozwój liści, po rozwój generatywny — tworzenie kwiatów, kwitnienie i rozwój owoców. Ich efekt jest wypadkową działania przeciwstawnych sił, hamowania i pobudzania, a każda z nich jest regulowana przez światło oraz podlega wpływowi endogennych regulatorów wzrostu i wewnętrznych rytmów rośliny.

Jak jakość światła wpływa na rośliny?

W widmie światła słonecznego docierającego do powierzchni ziemi występują okresowe zmiany ilościowe i jakościowe. Najważniejsze modyfikacje widma dotyczą zawartości światła czerwonego i dalekiej czerwieni. Mogą one dostarczać roślinom informacji o zmianach zachodzących w środowisku wzrostu. Barwniki roślinne reagujące na te zmiany to fitochromy, występujące w dwóch formach molekularnych, różniących się właściwościami spektralnymi. Fitochrom absorbujący światło czerwone (600–700 nm) określany jest jako PR, maksimum absorpcji wykazuje w świetle o długości fali 660 nm. Forma pochłaniająca daleką czerwień (700–800 nm), z maksimum absorpcji dla długości fali 730 nm, określana jest jako PFR. Obie formy fitochromu ulegają fotokonwersji, czyli przemianie jednej formy w drugą pod wpływem światła o odpowiedniej długości fali. Działanie na rośliny światłem, które zawiera fale z zakresu czerwieni i dalekiej czerwieni, prowadzi do ustalenia się tzw. stanu fotostacjonarnego fitochromu ф (ф = PFR/PTOT), decydującego o powstaniu określonej odpowiedzi fotomorfogenetycznej.

Ilość w świetle fal z zakresu czerwieni i dalekiej czerwieni ma wpływ na wzrost i rozwój roślin, między innymi na kiełkowanie nasion, wydłużanie łodygi, tworzenie pąków kwiatowych. W świetle o małym udziale fal z czerwonego zakresu widma w stosunku do dalekiej czerwieni spada w roślinie ilość fitochromu PFR i następuje intensywne wydłużanie się łodyg, a w sytuacji odwrotnej następuje podwyższenie stężenia PFR i hamowanie wzrostu wydłużeniowego — rośliny są niższe i bardziej zwarte, zaczynają się też rozkrzewiać.

Innymi, bardzo ważnymi fotoreceptorami uczestniczącymi w fotomorfogenezie są kryptochromy, aktywne w świetle niebieskim i ultrafioletowym. Światło niebieskie hamuje wzrost hypokotylu i łodygi, wpływa na rozwijanie się liścieni i liści, otwieranie aparatów szparkowych, fototropizm i termin kwitnienia roślin. Zarówno u gatunków jedno-, jak i dwuliściennych obecność światła niebieskiego wpływa pozytywnie na grubość blaszek liściowych, poprzez wpływ na liczbę i rozmiar komórek miękiszu gąbczastego i palisadowego.

Jak uzyskać światło o zmienionym spektrum?

Pierwsze próby zmiany jakości światła w szklarni w celu uzyskania określonej reakcji morfogenetycznej polegały na umieszczaniu nad roślinami filtrów spektralnych, czyli przezroczystych poliwęglanowych paneli wypełnionych barwnymi roztworami.
W celu hamowania wzrostu najbardziej efektywny okazał się wodny roztwór siarczanu miedzi (barwy niebieskiej). Obserwowano silne zahamowanie wzrostu łodyg i międzywęźli między innymi u pomidora, papryki, sałaty, chryzantemy, poinsecji, petunii, niecierpka. Stwierdzono też ciemniejsze zabarwienie liści i większą zawartość w nich chlorofilu. Badania spektrofotometryczne światła przefiltrowanego przez wodny roztwór siarczanu miedzi wykazują, że w porównaniu ze światłem naturalnym ma ono w niewielkim stopniu zmniejszoną zawartość światła czerwonego i niemal całkowicie usuniętą daleką czerwień, a oprócz tego zwiększoną względną zawartość światła niebieskiego. Zjawisko hamowania wzrostu roślin pod filtrami z siarczanem miedzi można tłumaczyć wysokim udziałem światła czerwonego w stosunku do dalekiej czerwieni oraz światła niebieskiego w porównaniu ze światłem czerwonym. Niestety tego typu filtry spektralne nie mogą znaleźć zastosowania praktycznego, przede wszystkim ze względu na fitotoksyczne działanie roztworu w przypadku ewentualnego wycieku.

Inną ciekawą propozycją jest wykorzystanie barwnych folii fotoselektywnych. Działają one na tej samej zasadzie, co filtry zawierające roztwór siarczanu miedzi, są jednak prostsze w użyciu i bezpieczne. Dotychczas stosowane w takich foliach barwniki są jednak zbyt mało trwałe, przez co ich użycie w praktyce produkcyjnej staje się kosztowne, ze względu na konieczność częstego wymieniania pokrycia tunelu.

Coraz większe zainteresowanie fotomorfogenezą skłania wiele ośrodków do prowadzenia badań nad wpływem jakości światła na wzrost roślin. Pozytywne efekty uzyskano wykorzystując do wyłącznego oświetlania roślin bądź do zmieniania jakości światła naturalnego w szklarniach diody emitujące światło o określonej długości fali, określane skrótem LED (ang. light emitting diod). Mogą one znaleźć praktyczne zastosowanie w szklarniach — pozwolą wzbogacić naturalne światło w określony zakres widma, jednocześnie — ze względu na małe gabaryty — nie powodują zacieniania roślin. W porównaniu z innymi źródłami światła, są znacznie bardziej wydajne, co może w pewnym stopniu zrekompensować wysokie koszty ich zakupu.

W pomieszczeniach pozbawionych dostępu naturalnego światła do oświetlania roślin można stosować lampy jarzeniowe. Pozytywne efekty w postaci hamowania nadmiernego wzrostu roślin i uzyskania bardziej zwartego ich pokroju można uzyskać wykorzystując światło o barwie niebieskiej. Zastosowanie do oświetlania rozsady pomidora lamp jarzeniowych emitujących światło niebieskie w większości przypadków pozwoliło uzyskać rozsadę niską i krępą, o silnej i grubej łodydze, krótkich międzywęźlach i intensywnym, ciemnozielonym zabarwieniu blaszek liściowych. Rośliny charakteryzowały się też zwiększonym udziałem suchej masy w świeżej masie części nadziemnych, a także szybciej zaczynały tworzenie pąków kwiatowych. Przeprowadzone ostatnio na Uniwersytecie Technologiczno-Przyrodniczym badania nad zastosowaniem do oświetlania rozsady pomidora jednocześnie lamp emitujących światło o składzie spektralnym zbliżonym do światła naturalnego i lamp niebieskich wykazały jednoznacznie, że takie rozwiązanie jest znacznie skuteczniejsze i korzystniej wpływa na wzrost roślin (fot.) niż użycie lamp emitujących wyłącznie światło niebieskie. Wyniki te świadczą o tym, że dla prawidłowego rozwoju rośliny potrzebują światła w pełnym zakresie widma, a wpływać na ich pokrój najlepiej poprzez zwiększanie udziału konkretnej barwy światła, odpowiedzialnej za wystąpienie danej reakcji morfogenetycznej.


Sześciotygodniowa rozsada pomidora uzyskana przy sztucznym świetle fluorescencyjnym — kolejno od lewej niebieskim, mieszanym (dzienne i niebieskie) oraz dziennym

Dynamika wzrostu pomidorów doświetlanych światłem tzw. dziennym,
niebieskim i mieszanym

 

Related Posts

None found

Poprzedni artykułW POŁUDNIOWYM TYROLU (CZ. II)
Następny artykułSterowana uprawa truskawek. Rodzaj sadzonki a plonowanie

ZOSTAW ODPOWIEDŹ

Wpisz treść komentarza
Wpisz swoje imię

ZGODA NA PRZETWARZANIE DANYCH OSOBOWYCH *

Twój adres e-mail nie zostanie opublikowany, podajesz go wyłącznie do wiadomości redakcji. Nie udostępnimy go osobom trzecim. Nie wysyłamy spamu. Pola, których wypełnienie jest wymagane, są oznaczone symbolem*.